Improving the Incoherence of a Learned Dictionary via Rank Shrinkage

نویسندگان

  • Shashanka Ubaru
  • Abd-Krim Seghouane
  • Yousef Saad
چکیده

This letter considers the problem of dictionary learning for sparse signal representation whose atoms have low mutual coherence. To learn such dictionaries, at each step, we first update the dictionary using the method of optimal directions (MOD) and then apply a dictionary rank shrinkage step to decrease its mutual coherence. In the rank shrinkage step, we first compute a rank 1 decomposition of the column-normalized least squares estimate of the dictionary obtained from the MOD step. We then shrink the rank of this learned dictionary by transforming the problem of reducing the rank to a nonnegative garrotte estimation problem and solving it using a path-wise coordinate descent approach. We establish theoretical results that show that the rank shrinkage step included will reduce the coherence of the dictionary, which is further validated by experimental results. Numerical experiments illustrating the performance of the proposed algorithm in comparison to various other well-known dictionary learning algorithms are also presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Face Detection Method Based on Over-complete Incoherent Dictionary Learning

In this paper, face detection problem is considered using the concepts of compressive sensing technique. This technique includes dictionary learning procedure and sparse coding method to represent the structural content of input images. In the proposed method, dictionaries are learned in such a way that the trained models have the least degree of coherence to each other. The novelty of the prop...

متن کامل

Discriminative Tensor Sparse Coding for Image Classification

A novel approach to learn a discriminative dictionary over a tensor sparse model is presented. A structural incoherence constraint between dictionary atoms from different classes is introduced to promote discriminating information into the dictionary. The incoherence term encourages dictionary atoms to be as independent as possible. In addition, we incorporate classification error into the obje...

متن کامل

On the Sample Complexity of Predictive Sparse Coding

Predictive sparse coding algorithms recently have demonstrated impressive performance on a variety of supervised tasks, but they lack a learning theoretic analysis. We establish the first generalization bounds for predictive sparse coding. In the overcomplete dictionary learning setting, where the dictionary size k exceeds the dimensionality d of the data, we present an estimation error bound t...

متن کامل

Rain Removal via Shrinkage-Based Sparse Coding and Learned Rain Dictionary

— This paper introduces a new rain removal model based on the shrinkage of the sparse codes for a single image. Recently, dictionary learning and sparse coding have been widely used for image restoration problems. These methods can also be applied to the rain removal by learning two types of rain and non-rain dictionaries and forcing the sparse codes of the rain dictionary to be zero vectors. H...

متن کامل

A New Approach for Learning Discriminative Dictionary for Pattern Classification

Dictionary learning (DL) for sparse coding based classification has been widely researched in pattern recognition in recent years. Most of the DL approaches focused on the reconstruction performance and the discriminative capability of the learned dictionary. This paper proposes a new method for learning discriminative dictionary for sparse representation based classification, called Incoherent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neural computation

دوره 29 1  شماره 

صفحات  -

تاریخ انتشار 2017